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LE'ITER TO THE EDITOR 

Non-linear dynamic systems, limit cycles, transformation 
groups, and perturbation techniques 

Willi-H Steeb 
Biochemisches Institut der Universitat Kiel, D-23 Kiel, West Germany 

Received 3 October 1977 

Abstract. A connection between non-linear systems of differential equations containing 
limit cycles, transformation groups, and perturbation techniques is discussed. 

Recently, in a series of papers, the author (Steeb 1977a, b, c, d) has investigated a 
connection between Lie's theory of one-parameter groups and autonomous non- 
linear systems of differential equations (i = Y(x))  containing periodic orbits. In 
particular, such systems have been considered where the periodic orbits are limit 
cycles. 

For a given system of linear differential equations i = X(x) = Ax (where A is an 
n x n matrix) with periodic solutions, the non-linear system i = Y(x)  is constructed 
via the relation 

[X, Y ] = A Y  (1) 

L f l =  Aa. (2) 

[ , ] denotes the commutator of the Cm-vector fields X and Y. The fields X and Y 
are written in local coordinates as X =XI d/dxl + . . . +X, d/dx, and Y = 
YI  d / d x ~ +  . . . + Y,, dldx,. LN stands for the Lie derivative of the differential form (Y 

with respect to X ,  where a is given by the inner product (contraction operation) 
a = Y -I w and w ( o  = dx1 X . .  . X dx,) is the standard volume in R". A is a C"- 
function. 

In some of the cited papers we have assumed that the vector field X is generated 
via the Hamiltonian form of the equations of motion. Note that the given approach 
also works if the equation i = X(x) is not generated by a Hamiltonian function. 

Three problems arise. The first integrals of the subsidiary equations dxl/Xl = 
. . . = dx,,/X,, (relative invariants with respect to X )  cannot be found, in general, when 
the vector field X is non-linear. Any dynamical system 1 = X(x) possesses n - 1 
(local) independent first integrals. Moreover, for a given X we cannot, in general, find 
a vector field Y (Y linear independent of X) such that equation (1) holds. In most of 
the examples (Steeb 1977a, b, c) the system of differential equations 1 = X ( x )  was 
linear. In this case we are able to find the most general vector field Y which commutes 
with X. Examples for the two-dimensional case, where the vector field X is non- 
linear, can be found in Steeb (1977d). Finally, assuming that the vector field Y is 

or, in a modern form, 
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given (for example the vector field Y associated with the van der Pol equation x1 = x2, 

1 2  = -XI + ~ ( 1  -x? )x2 ) ,  then we cannot find an appropriate X explicitly. 
To treat such problems, i.e. non-linear vector fields X or Y, we must include 

perturbation techniques in our approach. An appropriate perturbation technique is 
that developed by Kruskal (Kruskal 1962, McNamara and Whiteman 1967, Rae and 
Davidson 1973, Kummer 1971). Another technique, closely related to that of Krus- 
kal, was developed by Moser (Moser 1966, 1967, Kummer 1971). 

In the present Letter we discuss the connection between the perturbation tech- 
nique of Kruskal and our algebraic approach for obtaining limit cycles. 

Before considering the technique described by Kruskal we give a simple example 
(Steeb 1977c) which will serve to illustrate the connection between our approach and 
the perturbation technique. Let X be the vector field 

a a x = x1 - - x 2  -. 
ax2 axl 

Then the most general vector field Y which commutes with X has the form 

(3) 

To obtain the vector field Y we consider the Abelian Lie algebra {xl a/ax2- 
x 2  a/axl, x1 a/axl + x 2  a/axz} and the rule [X, fZ] = (XflZ + f [ X ,  21. As an ab- 
breviation we have put r2 = x :  + x i .  In polar coordinates (xl = r cos Q, x2 = 
-r sin Q, 0 r <a, 0 S rp < 27r) the vector fields take the form 

Then the corresponding systems of differential equations become 

Q=1; i = O  (6 )  

Q =fl(r); i = f2(r ) .  (7) 

The right-hand sides of both equations (7) do not depend on the angular variable Q. 

The necessary condition for the limit cycle, obtained via XI Y2 - YlX2 = 0, leads to 

As a concrete example, we set f i ( r ) =  1 - r 2  and fl(r)= 1. Then the only critical 
point of the system is (xl, x 2 )  = (0,O) and the limit cycle is given by r2 = 1. The limit 
cycle can also be viewed as a one-dimensional integral manifold of the system given 
above. 

Kruskal (Kruskal 1962, McNamara and Whiteman 1967) has considered an 
autonomous system of differential equations x = F ( x ,  E )  where it is assumed that for 
E = 0 the point x ( t )  traces out closed curves as t increases. Then one can introduce 
new variables y ( y  = (yl, . . . , ~ ~ - 1 ) )  and an angle-like variable Q to obtain the system 

f 2 ( r )  = 0. 

Q = f ( Q ,  Y )  (8) 

Y = E d Q ,  Y )  (9) 

where f and g are periodic in Q with the period r. The method developed by Kruskal 
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(1962) consists of introducing new variables (z = Z(Q, y), 
the equations 

= @(Q, y)) which lead to 

= w(z )  (10) 

z = Eh(2). (11) 
The angular variable does not appear on the right-hand side of equations (10) and 
(11). Kruskal (1962) has shown that starting from Q, y it is possible to obtain new 
variables 4, z.  The quantities 2, @, U,  and h are power series in E. Moreover, he has 
also shown that it is possible to find the inverse transformation as a power series in E. 

Now let us study the equations (10) and (11) with n = 2. To the differential 
equations (10) and (1 1) we assign the vector field 

a a Y = o ( z ) - + c h ( z ) - .  aQ az 

According to the example described in the first part of the paper, the most general 
vector field X which commutes with Y has the form X = a/acp. Then the necessary 
condition for the limit cycle leads to h (z) = 0. Since h and o are infinite power series 
in E ,  the vector field Y and therefore the equation for the limit cycle (necessary 
condition) can only be given approximately. We note that Moser (Moser 1966, 1967, 
Kummer 1971) described a method for obtaining the vector field Y in an approximate 
sense with a Lie algebraic method. 

The problem can also be considered from the point of view of the dimension of the 
underlying Lie algebra. In our approach the vector field X is an element of a 
finite-dimensional Lie algebra (Steeb 1977a, b, c). For example, the vector field 
X = (y, - x )  is the basis element of the Lie algebra SO(2). On the other hand, the 
perturbation technique leads, in general, to infinite-dimensional Lie algebras (Stern- 
berg 1961, Moser 1967). 
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